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We study a one-dimensional cellular automaton that was originally proposed as 
a candidate for exhibiting nonergodic behavior under noise. We prove that the 
deterministic model has the eroder property for two and only two invariant 
states. Moreover, we give the best possible estimates for the corresponding 
erosion times. We then review the results we have obtained from extensive 
computer simulations for the stochastic model and for a "mixed" model and 
argue that they suggest numerical and heuristic evidence in favour of ergodic 
behavior for all nonzero values of the noise parameter. 
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1. I N T R O D U C T I O N  

A cellular automaton (CA) consists of a large number of individual com- 
ponents or cells which may take on a finite number of positions. It is 
updated via a local and parallel mechanism through which, at every step, 
the position of each cell takes on a new value depending on the configura- 
tion of cells in a finite neighborhood of it at the previous time. 

Cellular automata appear under various forms as (simple) complex 
systems, in neural networks, in models of self-organized criticality, etc., in 
a variety of contexts, including biology, the social sciences, and many 
others. Very often one is interested in their stochastic version, the so-called 
probabilistic cellular automata (PCA), obtained by adding noise: that is, 
independently at each cell at each time, the automaton rule is followed only 
with some probability 1 - e with noise parameter 0 ~< e ~< 1/2. 

The addition of noise is the usual way to incorporate unknown factors 
present in the system. For example, in computer science, the reliability of 
large parallel computations must be understood for noisy environments. 
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The more general question is to determine, for a given CA rule and a 
given noise level, the behavior of the system at large times and the relation 
between initial state (input) and asymptotic state (output). Important  in 
that respect is to ascertain whether the (deterministic) CA has attracting 
cell configurations, i.e., time-invariant configurations which are recovered 
in a finite time if one initially considers configurations that are different 
from them over a finite number of cells. 

In that case, the CA would "wash out" finite islands of cells having 
arbitrary positions, immersed in a "sea" consisting of some specific cell 
configuration ~, to end up after some finite time with the unperturbed 
configuration a which is preserved under the CA rule. This "eroder 
mechanism" lies at the heart of many proofs showing the existence of more 
than one stationary state for a low-noise PCA: these states can be thought 
of as perturbations of cell configurations having the eroder property for the 
deterministic CA rule, much as in equilibrium statistical mechanics where, 
under suitable conditions, the low-temperature phases can be constructed 
from the appropriate ground states. While such a general relation or 
"low-noise theory" does not yet exist for PCA, all we do know confirms 
this picture. The best known example is Toom's model, (1) which, in this 
context, was discussed in Lebowitz et aL ~2) 

In 1978, Gacs, Kurdyumov, and Levin introduced three types of one- 
dimensional CA having two states with an eroder property. Given the 
special topology of one-dimensional arrays, those examples are in fact 
not so easily come by as in the higher-dimensional case. This is in itself 
of some importance in connection with the so-called "positive rates 
conjecture ''(3) and in the light of the discussion on nonergodicity above. 
Gacs et al34) wondered therefore whether the associated one-dimensional 
PCA had different stationary states at low noise. They were not able to 
conclude one way or the other, but their computer simulations led them to 
the conclusion that the systems were candidates for possible nonergodic 
behavior. In particular, their slow convergence to stationarity made them 
what Gacs eta/.  (4) called "quasi-nonergodic." 

Nowadays it is widely believed (even by the proponents themselves, it 
seems) that those examples are "probably" ergodic for any finite noise, but 
no proof exists. On the other hand, it is still not clear whether the 
possibility of a nonergodic one-dimensional PCA (with some extra condi- 
tions (2)) can be realized. A counterexample to the positive rates conjecture 
is being constructed by Gacs. (5) An important property such a PCA should 
have is the ability to send messages across finite islands to let one end of 
the array know how good (or bad) the configuration at the other end is. 
This "conspiration at a distance" is necessary in one dimension (one cannot 
just get around the obstacle) to wash out finite islands. It is therefore useful 
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to study this mechanism in the simplest possible case and this brings us 
back to the original paper. (4) 

Here we revisit the simplest one-dimensional automaton having the 
eroder property appearing in Gacs eta/. (4) We study this system, which is 
sometimes called the "soldiers model" or "unsymmetric voter model, ''(6) on 
two levels. First we consider the deterministic rule (the CA) and give a 
proof  of the eroder property (Section 3). We are able to derive the best 
possible bounds on the maximal growth of an initial island and on the time 
it takes for the eroder to wash out this island. We prove, moreover, that 
there are only two states having this property. 

After we understand this mechanism we add noise the system. Exten- 
sive computer simulations allow us to predict the behavior of the relaxation 
time ~ as a function of the size of the system L and of the noise level e. We 
find that v ~ e =/~ with e > 0 a constant independent of L (for large enough 
systems). So we do indeed have to wait for a long time to see the system 
in its stationary state, but this time does not grow with the volume, no 
matter  how low the noise level is. This is of course typically ergodic 
behavior and we present some further arguments for ergodicity after our 
discussion of the simulations (Section 4). Finally, in Section 5 we return to 
the broader context of the problem of phase transitions for one-dimen- 
sional PCA and we give our conclusions based on the model which is 
studied here. 

2. THE G A C S - K U R D Y U M O V - L E V I N  M O D E L  

The CA we consider is a uniform chain of cells which is infinite in both 
directions. That  is, to each site x of the one-dimensional lattice 2, there is 
associated an orientation a (x )~  { *-, - ,  } taking on just two possible values 
(left or right). The full configuration c r = { c r ( x ) , x E Z }  is updated in 
discrete time steps to change as a whole into S=(a) at times n = 0, 1, 2,..., 
with S~ ~r and S=(o -) = S(S"-1(~)). The operator S is the rule which 
defines our CA. Take any x ~ Z ;  then S(a)(x) is the outcome of the 
majority vote between 

{a (x ) , a ( x+ l ) , a ( x+3) }  if a ( x ) = - - *  
(1) 

{~r (x ) ,a (x -1 ) ,a (x -3 ) }  if a ( x ) =  *-- 

Doing this simultaneously at every x E 7/, we obtain as outcome the new 
configuration S(a) = { S(a)(x), x e 7/}. 

De f in i t i on  1. A finite perturbation q of a configuration a is a 
configuration such that the set {xe  Z: r/(x):~ cr(x)} of points where they 
disagree is finite. 
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D e f i n i t i o n  2. A configuration a is called attracting if (i) S ( a ) =  ~r; 
(ii) for any finite perturbation t/ there is a finite time n(tt) = n < oe such that 
s ~ ( ~ )  = ~. 

If a configuration a satisfies the first condition, we will say that it is 
time-invariant. 

So far we have introduced the deterministic model. The presence of 
noise is modeled by associating independently to every site at every time 
step a finite probability of making a random choice in the updating. Let 
0 <~ e ~< 1/2, the noise level, be given. The stochastic version of the CA 
(which we have already refered to as the PCA) is defined as the discrete- 
time Markov process with transition probability 

x E •  

where 

p~(~(x) i ~): {~-~ if S(q)(x)=a(x) 
if S(q)(x)v~a(x) (2) 

is the probability to find the value a(x) at site x e 7/if, at the previous time, 
the configuration was t/. Clearly, for e = 0 we recover the deterministic 
updating, while for e = 1/2 there is complete randomness. 

It is easy to show that the regime of exponential ergodicity (where 
there is an exponential convergence to the unique stationary measure) 
extends at least to 2/5 <e~< 1/2. (v) The question to be asked therefore is 
whether close to the deterministic model (~ small) there is more than one 
invariant measure #, i.e., different probability measures /~ for which 
/~k=#kP with P the transition generator defined via (2). As we have 
already argued in the Introduction, it is useful in this context to examine 
the CA and find its (if any) attracting configurations. Their presence might 
indicate an interesting low-noise behavior. 

3. T H E  D E T E R M I N I S T I C  M O D E L  

The main result of this section is a proof of the statement (4~ that the 
CA has two attracting states, the all-left-arrows and the all-right-arrows- 
state. Our proof gives the optimal estimate for the time it takes to return 
to these states after a finite perturbation is applied. In addition, we show 
that there are no attracting states other than the above-mentioned two. 

Looking at the CA rule S, as defined in (1), it is clear that S commutes 
with reflection when the directions of the arrows are simultaneously 
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reversed; i.e., if R: a ( x ) ~  a ( - x )  denotes reflection and F: o-(x)--, - a ( x )  
denotes arrow-flipping, then SRF= RFS. It is therefore sufficient to for- 
mulate our results with respect to, say, the right arrows only. From now 
on we let a + denote the configuration with all right arrows: a + ( x ) =  ~ ,  
Vx~Z.  

Defini t ion 3. We say that a configuration a has an island of size at 
most N if for some integer n and nonnegative integer N, a agrees with ~ + 
outside of the interval n ~< x ~< n + N -  1. 

In the discussions that follow, the collection of sites included between 
the leftmost and the rightmost left arrows in a will be referred to as the 
island of a. 

It is clear that S(a +) = a +, but we also have, for N>~ 3, the following 
result, 

T h e o r e m  1. If a has an island size at most N, then this island 
never grows larger than to size at most 2 N -  1. 

Theorem 2. If a has an island of size at most N, then 
s 2 N -  3 (0  -) = 0 "+ " 

The cases N = l ,  2 can be checked directly to give S(o- )=o  +, 
S2(o) = o -+, respectively. Note  that the estimates in Theorems 1 and 2 are 
optimal, as can be seen by taking 

a(x)= ~- for l~<x~<N and o ( x ) =  ~ otherwise 

It is :instructive to see (as shown in Fig. 1) how this kind of island is 
washed out. We will now prepare the proofs of these theorems by intro- 
ducing some definitions. 

Defini t ion 4. A configuration a =  {a(x), X~7/} is good to the left 
of a for some a ~ 7/if  it satisfies the following set of consistent conditions: 

C1. V x ~ < a - 2 ,  i f a ( x ) =  ~ , t h e n a ( x + l ) =  ~.  

C2. Vx<~a-4, if a ( x ) =  ~-, then a ( x + 3 ) =  ~ .  

C3. I f a ( a - 3 ) = a ( a ) =  ~ ,  then a ( a - l ) =  +--. 

Defini t ion 5. A configuration a is good if a is good to the left of 
a for all a~7/. 

In words, to the left of site a, the configuration ~ satisfying C1, C2, 
and C3 has neither two consecutive left arrows nor two left arrows at a 

822/67/3-4-6 
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Fig. 1. A finite perturbation being washed out. The O's represent left arrows and the l's, right 
arrows. 

distance 3, except near the boundary site a. For example, the configuration 
with 

~(x)  = ~ ,  Vx ~< 0 (3) 

is good  to the left of 2. 

k e m m a  1. If o- is good  to the left of a, then S(a)  is good  to the left 

o f a + l .  

Proof. The reader can verify, by checking all possibilities, that if S(~)  
is not good  to the left of a + 1, then o- cannot be good  to the left of a. For 
example, suppose that for S ( a ) = S  we have S ( x ) = S ( x + l ) =  ~ while 
~(x)  = ~ for some x ~< a - 1 .  We must then have that a (x  + 1 ) =  *-- and 
therefore o-(x + 2) = ~ .  But this is not allowed by C2 if x ~< a -  2 and by 
C 3 i f x = a - 1 .  | 

L a m i n a  2. Let N~>3. If a has an island of size at most  N, then 
S N-  1(~) is good  and sN(~r) has an island of size at most  2 N -  6. 

Proof. We may and do assume that o- agrees with o- + outside of the 
interval 1 ~< x ~< N. From Lemma 1 and the example given in (3), SN-2(~)  
is good  to the left of  N and sX-l(a) is good  to the left of N +  1. But at 
every step n, S'(~r)(x) = --% Vx > N, so that not only is S N-  ~(~) good,  but 
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we also have that S N I ( a ) ( N - 2 ) = S N - I ( c T ) ( N - 1 ) =  ~ ,  and hence 
sU(o~)(x) = ~ ,  Vx ~> N - -  5. At the same time, it is clear that sN(a)(X)  = -% 
Vx ~< - N ,  so that the conclusion of the lemma follows. | 

Proof of Theorem 1. At time N - 1  the original island can have 
invaded at most N -  1 other sites, growing to a size at most 2N- -  1. On the 
other hand, since 3N-1(r is good (Lemma 2), from this time on the island 
can only shrink because at each updating the rightmost left arrow moves 
at least two places to the left. | 

Proof of Theorem 2. From Lemma 2 it suffices to show that 
SM(a) = ~+ for every configuration a which is good and has an island of 
size at most 2M. Such a configuration ~ consists of zones containing an 
odd number  (n ~< 2 M -  1) of alternating arrows with left arrows on both 
ends~ i.e., 

a ( x - 2 ) = ~ ( x - 1 ) = a ( x ) =  ~ ,  ~ ( x +  1 ) =  ~ ,  a ( x + 2 ) =  ~ .... 

alternating up to 

.... a ( x +  n) = ~ ,  a ( x + n + l ) = a ( x + n + l + 2 ) = a ( x + n + 3 ) =  

and these zones are separated by at least three right arrows. At the next 
time, S ( a ) =  S, and we have 

S ( x - 5 ) = S ( x - 4 ) = S ( x - 3 ) = S ( x - 2 ) = S ( x -  1 ) =  -~, 

S ( x )  = ~ ,  S ( x  + 1) = ~ ,  ... 

alternating up to 

.... S ( x + n - 3 ) =  +-, 

S(x + n - 2 ) = S ( x  + n - 1 ) = S ( x  + n ) = S ( x  + n +  1)=  

= S ( x + n + 2 ) =  

and we get a zone of n -  2 alternating arrows. Now all zones are separated 
by at least five right arrows. Therefore at time ( n -  1)/2 + 1 this zone has 
disappeared and all zones are gone at time M. | 

It is possible to find an infinite number of cell configurations other 
than a + and ~ -  [def inedof  course as a - ( x ) =  ~-, VxeE]  which are time- 
invariant for the automaton rule defined by (1). Let us divide any con- 
figuration into blocks consisting of maximal intervals of sites containing 
like arrows; it is then possible to characterize the invariant configurations 
by the following lemma, which follows from straightforward verification: 

l . e m m a  3. A configuration is invariant if and only if (i) every block 
which contains at least three right arrows extends to + oo, and every block 



514 Gonzaga de Sg and Maes 

with at least three left arrows extends to - m :  (ii)if two adjacent blocks 
each have length one, then the left one contains a right arrow. 

However, only two of those invariant configurations have the eroder 
property, as follows from the next result. 

Theorem 3. Let ~ be a time-invariant configuration other than ~+ 
and a - ;  then there exists ~/# ~r, a finite perturbation of a, which is also 
time-invariant. 

Proof. Suppose that a is time-invariant configuration and that it is 
neither a + nor a - .  If a contains a (semi-infinite) block of at least three 
right arrows, then the rightmost left arrow in a can be flipped; and 
similarly if a contains a block of at least three left arrows. Otherwise, sup- 
pose that o- contains a block of length one, say consisting of a right arrow 
at x. By Lemma 3, the block to the left of this contains two left arrows and 
a(x - 1 ) can be flipped. Finally, if all blocks of ~ have length two, we may 
change 

to 

4. T H E  S T O C H A S T I C  M O D E L  

The stochastic model may be realized by supposing that at each 
individual updating there is a probability e, where 0 < e ~< 1/2, of not 
following the rule, but rather of doing exactly the opposite. 

The main question for this model is whether the eroder mechanism 
survives--in which case we will have, as previously, different "attracting" 
states and therefore a system that is nonergodic--or  whether the eroder 
mechanism no longer works, so that the system is ergodic and has a unique 
time-invariant measure. In the latter case, this unique measure is associated 
with the existence of equal numbers of right and left arrows. 

To get some hints of what a likely answer to this question might be, 
we conducted some computer simulations. A first remark that we have to 
make about  those simulations is that, in a computer, we will obviously not 
be working with an infinite chain, but with a finite one of size L. It  is 
clear that this means we will be trying to simulate (possible) nonergodic 
behavior through a system that will always be ergodic for all nonzero 
values of ~. 

One way to get around this problem is to compute the variables we 
will be interested in as functions both of e and of L, but for  many different 
values of  e and L. Then we can hope to be able to evaluate the influence of 
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the finiteness of our system on these variables and to predict what will 
happen in the limit L ~ oo. 

We will take, as boundary conditions, a set of three fixed right arrows 
at either end of the finite chain. This, together with the procedure of 
varying L, should emulate the effect of a chain that would be infinitely 
extended in either direction, and filled with right arrows. 

The quantities we should actually look at in our simulations were 
suggested by the observation (2) that on the two-dimensional space-time 
lattice the PCA describes an Ising-spin equilibrium system. The prototype 
equilibrium system showing a phase transition in two dimensions is the 
nearest-neighbor Ising model (s~ { ~'(r) } with Hamiltonian 

H(~')  = - ~ ~'(r) ~'(r') (4) 
(rr'> 

Consider this last model at temperature T confined to a strip of width 
L on the two-dimensional lattice. An important quantity from the behavior 
of which we can study the phase transition is the correlation length ~L on 
this strip. It is defined via 

(~'(0) ~'(r) )L ~ e -Irl/~L (5) 

and has the meaning of the mean distance between two spins on the strip 
pointing in the same direction. It is well known ~s) that ~L is a (finite) 
constant for all L if T >  T c (the critical temperature) but that it diverges 
like 

L if T =  T C 
~ L ~ e L / r  if T <  Tc (6) 

when we consider the limit L ~ ~ .  
To study the ergodic behavior of the PCA, we propose therefore the 

analog of ~L, which we here call, in PCA language, the relaxation time rL. 
For  a chain of size L, it is just the first time step at which the number of 
right arrows on the chain is in the interval ( L / 2 -  x/L,  L/2 + x/-L), having 
started from the all-right-arrows state. Roughly speaking, Vc is the number 
of steps needed to obtain configurations with "equal" numbers of right and 
left arrows. 

If we take over the behavior (6), nonergodicity for small e would be 
signaled by the relaxation time Zc diverging like 

~L ~ eC~L~/~ (7) 

for fixed L, e $ 0, and like 

72 L ~ eC(a)  L 
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for fixed e, L T co. On the other hand, if the system is ergodic for small 
noise, we expect C(L) in (7) to be bounded in L for all e. 

The computer  simulations were actually carried out using a vector 
with L components,  all of which initially set to represent right arrows, and 
a pseudo-random-number  generator to simulate noise for each component  
at each updating; we then let it "run." We present below the results that we 
have obtained; from now on we will denote r L as z for simplicity. 

We took 0.05 ~< e ~< 0.5 and 100 ~< L ~< 6000; for each value of (e, L) we 
made an average over 100 runs to produce the points plotted in the graphs. 
Figure 2 shows In r as a function of 1/e for the different values of L 
considered. The data obtained from the simulations can be well fitted 
to straight lines, confirming the expected exponential behavior. It is 
interesting to remark that the lines obtained by least-squares fit are almost 
parallel and somewhat "huddled" together; this can already be taken as 
a first indication of the low sensitivity of the relaxation time to variations 
in the value of L. 

Figure 3 shows In r as a function of L for the different values of ~ con- 
sidered. One can immediately see that the relaxation time r is essentially 
constant for 2000 ~< L ~< 6000. 

If we take the slope of the straight lines in Fig. 2 and the values of the 
relaxation time z obtained for large L in Fig. 3, we can combine them to 
give 

~ e ~/~, ~ ~ 0.58 

This leads us to believe, in accordance with the arguments exposed above, 
that this system is ergodic at least for e i> 0.05. 

We can try to understand the reasons behind this ergodic behavior by 
examining what happens to an island of left arrows (in a sea of right 

12 

8 
= 

OI 5 10 15 20 25 
1/~: 

Fig. 2. Graph  of In z as a function of 1/~ for the following values of L: 100 (bottommost) ,  
500, 800, 1000, 2000, 4000, 5000, 6000 (topmost). The points represent the data obtained via 
simulations and the straight lines were obtained via least-squares fit. 
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Fig. 3. Graph of In r as a function of L for the following values of e: 0.05 (topmost), 0.06, 
0.07, 0.08, 0.09, 0.1, 0.2, 0.4 (bottommost). The lines simply connect the points obtained via 
simulation. 

arrows) when noise is added to the system. We know, from the deter- 
ministic model, that two things must occur for an island to be wiped out: 
(i) a patch of alternating arrows is formed to the left of the perturbation, 
expanding in either direction; and (ii)the right end of the perturbation 
does not move to the right, so that the patch of alternating arrows is able 
to reach it and give out the "destruction" message. 

When we introduce noise in the system, one or both of these condi- 
tions may be interfered with by the making of errors, so that the island 
may survive for a considerably longer time than in the deterministic case. 
To illustrate this, we present in Fig. 4 a simulation of what happens to an 
island under noise. 

Such an island might be created as a small perturbation of the initial 
all-right-arrows state by a local fluctuation in the making of errors. It 
might then survive long enough to merge with similar perturbations, 
creating ever-larger regions of left arrows. 

Our simulations suggest that this is the picture we see for low noise. 
They also suggest that this gradual buildup leads, after a long enough time, 
to a large excess of left arrows, which would then fill almost all the line. At 
this point, it is the right arrows which would constitute the perturbation; 
the "error-preserving" mechanism we have just described would go on, but 
now in the sense of a gradual buildup of the number of right arrows. 

For  low noise, then, we would essentially see an oscillation between 
large numbers of either right or left arrows, so that on average either excess 
would be equally probable; whereas for high noise, errors are made often 
enough for the system to exhibit at each step right and left arrows in 
roughly equal numbers and distributed evenly on the line. However, one 
might speculate that, in the absence of a phase transition, the system 
should behave similarly in the high- and low-noise cases, but with a 
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Fig. 4. The evolution 
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of a finite perturbation for ~ = 0.05. The O's represent left arrows and 
the l's, right arrows. 

different scale; so that we would expect the oscillations above, for very 
large L (of the order of the relaxation time), to be actually damped. 

In order to explore other properties of the stochastic model which 
might provide more insight into the behavior of the PCA, we conducted 
further simulations based on an idea suggested by Bricmont. (9) It consists 
of the following "mixed" system: take, as initial condition, a finite perturba- 
tion of ~ + where the island is a block of N left arrows. Then let the island 
(in the sense of Definition 3) undergo stochastic evolution, while the sea of 
right arrows undergoes deterministic evolution. In other words, we intro- 
duce noise only inside the interval delimited by the outermost left arrows, 
and compute the time 0 it takes for all left arrows to disappear. 

We investigated the system with 0.00001 ~< e ~< 0.5 and 100 <~ N~< 2000. 
We discovered that the time 0 exhibits a peculiar behavior when we con- 
sider it as a function of ~ for fixed N, as can be seen in the graph presented 
in Fig. 5. 

This behavior can be ascribed to the difference between the high- and 
low-noise cases alluded to above. For e large enough, a large number of 
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Fig. 5. Graph of In 0 as a function of - l n  e for the following values of N: 100 (bottommost), 
200, 500, 800, 1000, 2000 (topmost); here 0.00001 ~< s ~< 0.5 and the lines simply connect the 
points obtained via simulation. 

errors may be made early on, creating in a small number of steps con- 
figurations that are good (in the sense of Definitions 4 and 5); this may 
allow the island to disappear more quickly than it would if it followed a 
deterministic evolution, whereas for smaller values of e, what we see at 
work is sensibly the same mechanism as in the PCA (where stochasticity is 
allowed on the whole of the chain). But since the island is finite, and 
subject to the "influence" of the deterministic sea of right arrows on either 
side of it, we finally see 0 approach the deterministic value 2 N - 3  for very 
small e. 

We believe, moreover, that this behavior may suggest that the 
stochastic model is indeed ergodic for any finite (i.e., nonzero) noise. Con- 
sider the value of e for which the time 0 starts decreasing (in a sense, this 
marks the beginning of nonergodic behavior); since this value is inversely 
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Fig. 6. Graph of 0 as a function of N for the following values of e: 0.0l (topmost), 0.02, 0.03, 
0.035, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 (bottommost). The lines were obtained by least- 
squares fit and the points via simulation. 
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dependent on N, we may imagine that as N T 0% it tends to zero, so that 
for the real, infinite system there would be no phase transition for e r 0. 

As concerns the time for an island to disappear as a function of its 
size, we have that 0 grows linearly with N, at least for e 1> 0.01. We have 
some evidence that, for smaller e (in the region where 0 is converging to the 
deterministic value), we may rather have 0 ~ N 2, but data are as yet scant. 
Figure 6 shows the graph of 0 as a function of N for values of e in the 
interval 0.01 ~< e ~< 0.1. 

5. A D D I T I O N A L  R E M A R K S  A N D  C O N C L U S I O N S  

Our results indicate that the G K L  model has a unique stationary 
measure for all finite noise levels. This conclusion is not unexpected even 
though the deterministic model shows certain stability against perturbing 
the homogeneous states. 

It is indeed widely believed that stochastic perturbations of any such 
one-dimensional CA are ergodic. The main ingredients of the CA rule S(~r) 
responsible for such behavior we take to be the following: 

(i) S is one-dimensional, translation invariant, and local. 

(ii) S ( ~ + ) = ~  +,S(o- ) = a -  

(iii) If, for a given site x, a(x)= tt(x) and a(y)>~ try), Vy r x, then 
S(a)(x) >~ S(tl)(x) (with the convention that "--*" >t " ~ " ) .  

Condition (iii) implies that an arrow which has a given orientation is more 
likely to flip to the opposite orientation if it generally disagrees with its 
neighbors than if it agrees with them. For  example, if a(x) = t/(x) = ~ and 
tt ~< a in the above sense, then the corresponding arrow flip probabilities 
satisfy c(x, a) <~ c(x, tl). 

The main reason this "positive rates conjecture" gets such widespread 
support is simply that there are no known counterexamples. In addition, 
one sometimes refers to equilibrium statistical mechanics, where one- 
dimensional systems with local potentials indeed have a unique Gibbs 
measure (no phase transitions). 

On the other hand, it has been argued that this is not the correct 
analog, for we know that one-dimensional PCA are in direct relation 
with two-dimensional equilibrium statistical mechanical systems on the 
space-time lattice/2~ And of course, in two dimensions, phase transitions 
are possible. 

While we favor this two-dimensional picture, it should be pointed out 
that the space-time equilibrium system originates from making, with 
probability 2e, independently at every point x ~ 7/2, a completely random 
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choice ~ or ~ .  If we denote the corresponding random variable by 
{hx}~z2, hx = _+1 with equal probability, and we let {wx}~z2 indicate the 
absence (w~= 1 with probability 1 -  2e) or presence (w~= 0 with proba- 
bility 2e) of noise at the point x, then 

(1 - -wx)  h x ~- 2a~vL 
x E V  

for V a two-dimensional domain of linear size L with ~ v approximately 
Gaussian (as L ~ c~) with mean zero and variance 1. 

At the same time, the influence of the initial condition on the 
configuration {ax, x~  V} should be counted as a boundary term 

wx<~ cL 
x E c ~ V  

i.e., having a deterministic bound of order L, with c a constant. We assume 
that (i)-(iii) let the stationary system exist in some sort of ferromagneti- 
cally ordered phase in each of such domains V centered around a concen- 
tration of noise points. Then, the orientation of arrows inside V is almost 
everywhere the same, once a choice has been made between the orientation 
dictated by the sign of ~ v and the boundary condition. Therefore, we may 
expect that, as in the traditional Imry-Ma argument for the random-field 
Ising model,(1~ the configuration {ax} will follow the fluctuation ff v of the 
neighboring random field {hx} and forget, as L ~ ~ ,  the initial condition. 
This point of view lends further support to our conclusion that the G K L  
model is ergodic for any e r 0. 
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